Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Org Biomol Chem ; 22(16): 3099-3108, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38444309

RESUMO

Fluorescence imaging is a powerful technique for visualizing biological events in living samples with high temporal and spatial resolution. Fluorescent probes emitting far-red to near infrared (NIR) fluorescence are particularly advantageous for in vivo imaging due to their high tissue permeability and low autofluorescence, as well as their suitability for multicolor imaging. Among the far-red to NIR fluorophores, Si-rhodamine is one of the most practical fluorophores for the development of tailor-made NIR fluorescent probes because of the relative ease of synthesis of various derivatives, the unique intramolecular spirocyclization behavior, and the relatively high water solubility and high photostability of the probes. This review summarizes these features of Si-rhodamines and presents recent advances in the synthesis and applications of far-red to NIR fluorescent probes based on Si-rhodamines, focusing on live-cell imaging applications such as fluorogenic probes, super-resolution imaging and dye-protein hybrid-based indicators.


Assuntos
Corantes Fluorescentes , Rodaminas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Rodaminas/química , Rodaminas/síntese química , Humanos , Imagem Óptica , Animais , Estrutura Molecular , Sobrevivência Celular
2.
Sci Adv ; 10(7): eadi8847, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363840

RESUMO

Various control strategies are available for building fluorogenic probes to visualize biological events in terms of a fluorescence change. Here, we performed the time-dependent density functional theory (TD-DFT) computational analysis of the twisted intramolecular charge transfer (TICT) process in rhodamine dyes. On the basis of the results, we designed and synthesized a series of rhodamine dyes and established a fluorescence quenching strategy that we call steric repulsion-induced TICT (sr-TICT), in which the fluorescence quenching process is greatly accelerated by simple intramolecular twisting. As proof of concept of this design strategy, we used it to develop a fluorogenic probe, 2-Me PeER (pentyloxyethylrhodamine), for the N-dealkylation activity of CYP3A4. We applied 2-Me PeER for CYP3A4 activity-based fluorescence-activated cell sorting (FACS), providing access to homogeneous, highly functional human-induced pluripotent stem cell (hiPSC)-derived hepatocytes and intestinal epithelial cells. Our results suggest that sr-TICT represents a general fluorescence control method for fluorogenic probes.


Assuntos
Corantes , Citocromo P-450 CYP3A , Humanos , Fluorescência , Mercaptoetanol , Rodaminas
3.
ACS Nano ; 18(6): 5167-5179, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301048

RESUMO

Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional , Animais , Camundongos , Imageamento Tridimensional/métodos , Sondas Moleculares , Hipóxia/diagnóstico por imagem , Imagem Óptica/métodos
4.
Adv Sci (Weinh) ; 11(10): e2306559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38140707

RESUMO

Single-molecule enzyme activity assay is a platform that enables the analysis of enzyme activities at single proteoform level. The limitation of the targetable enzymes is the major drawback of the assay, but the general assay platform is reported to study single-molecule enzyme activities of esterases based on the coupled assay using thioesters as substrate analogues. The coupled assay is realized by developing highly water-soluble thiol-reacting probes based on phosphonate-substituted boron dipyrromethene (BODIPY). The system enables the detection of cholinesterase activities in blood samples at single-molecule level, and it is shown that the dissecting alterations of single-molecule esterase activities can serve as an informative platform for activity-based diagnosis.


Assuntos
Esterases , Esterases/análise , Esterases/química
5.
J Am Chem Soc ; 146(1): 521-531, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38110248

RESUMO

Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.


Assuntos
Carboxipeptidases , 60446 , Masculino , Humanos , Fluorescência , Carboxipeptidases/metabolismo , Hidrolases , Aminoácidos , Corantes Fluorescentes/química
6.
Front Microbiol ; 14: 1276447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965540

RESUMO

A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine O-acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form O-acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors in vitro and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in Escherichia coli to a level similar to that found in E. coli lacking the cysE gene. Consistent with the reduction of those antioxidant molecules in bacteria, E. coli became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-ß-lactamase-expressing Gram-negative bacteria (E. coli and Klebsiella pneumoniae) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.

7.
Sci Rep ; 13(1): 16456, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777556

RESUMO

D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 µM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine ß-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.


Assuntos
Cistationina gama-Liase , Bases de Schiff , Animais , Humanos , Ratos , Domínio Catalítico , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Fosfatos , Fosfato de Piridoxal/metabolismo
8.
Commun Chem ; 6(1): 68, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055561

RESUMO

Controlling tumor-specific alterations in metabolic pathways is a useful strategy for treating tumors. The glyoxalase pathway, which metabolizes the toxic electrophile 2-methylglyoxal (MG), is thought to contribute to tumor pathology. We developed a live cell-based high-throughput screening system that monitors the metabolism of MG to generate D-lactate by glyoxalase I and II (GLO1 and GLO2). It utilizes an extracellular coupled assay that uses D-lactate to generate NAD(P)H, which is detected by a selective fluorogenic probe designed to respond exclusively to extracellular NAD(P)H. This metabolic pathway-oriented screening is able to identify compounds that control MG metabolism in live cells, and we have discovered compounds that can directly or indirectly inhibit glyoxalase activities in small cell lung carcinoma cells.

9.
J Pharm Biomed Anal ; 226: 115248, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36645986

RESUMO

Controlling the physical stability of noncrystalline active pharmaceutical ingredients remains a major challenge in the development of amorphous formulations such as amorphous solid-dispersion (ASD) formulations. To establish new evaluation and formulation strategies, the spatial distribution of the crystal phase in bulk amorphous nifedipine (NFD) was investigated as a model. The crystallization of amorphous NFD and the effect of a deliberately added impurity were investigated using powder X-ray diffraction (PXRD), differential scanning calorimetry and real-time in situ X-ray micro-computed tomography (X-ray CT). The stability data of amorphous samples, i.e., NFD and a mixture of NFD with an oxidative degradation product of NFD, impurity A (Imp A), at a weight ratio of 90:10, presented as percent amorphous remaining, suggests that Imp A accelerates the bulk crystal growth of NFD. Real-time in situ X-ray CT results showed surface-enhanced crystal growth and cavity formation in solid NFD samples. Moreover, the crystals were heterogeneous in density. These results suggest that Imp A affects the physical stability of the amorphous NFD. X-ray CT equipped with a heating unit can aid in-situ evaluation and assessment of physicochemical properties and physical stability of amorphous samples and formulations.


Assuntos
Contaminação de Medicamentos , Estabilidade de Medicamentos , Nifedipino , Varredura Diferencial de Calorimetria , Cristalização/métodos , Nifedipino/análise , Nifedipino/química , Solubilidade , Difração de Raios X , Microtomografia por Raio-X
10.
World J Clin Oncol ; 13(11): 880-895, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36483974

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a minimally invasive form of cancer therapy, and the development of a novel photosensitizer (PS) with optimal properties is important for enhancing PDT efficacy. Folate receptor (FR) membrane protein is frequently overexpressed in 40% of human cancer and a good candidate for tumor-specific targeting. Specific active targeting of PS to FR can be achieved by conjugation with the folate moiety. A folate-linked, near-infrared (NIR)-sensitive probe, folate-Si-rhodamine-1 (FolateSiR-1), was previously developed and is expected to be applicable to NIR-PDT. AIM: To investigate the therapeutic efficacy of NIR-PDT induced by FolateSiR-1, a FR-targeted PS, in preclinical cancer models. METHODS: FolateSiR-1 was developed by conjugating a folate moiety to the Si-rhodamine derivative through a negatively charged tripeptide linker. FR expression in the designated cell lines was examined by western blotting (WB). The selective binding of FolateSiR-1 to FR was confirmed in FR overexpressing KB cells (FR+) and tumors by fluorescence microscopy and in vivo fluorescence imaging. Low FR expressing OVCAR-3 and A4 cell lines were used as negative controls (FR-). The NIR light (635 ± 3 nm)-induced phototoxic effect of FolateSiR-1 was evaluated by cell viability imaging assays. The time-dependent distribution of FolateSiR-1 and its specific accumulation in KB tumors was determined using in vivo longitudinal fluorescence imaging. The PDT effect of FolateSiR-1 was evaluated in KB tumor-bearing mice divided into four experimental groups: (1) FolateSiR-1 (100 µmol/L) alone; (2) FolateSiR-1 (100 µmol/L) followed by NIR irradiation (50 J/cm2); (3) NIR irradiation (50 J/cm2) alone; and (4) no treatment. Tumor volume measurement and immunohistochemical (IHC) and histological examinations of the tumors were performed to analyze the effect of PDT. RESULTS: High FR expression was observed in the KB cells by WB, but not in the OVCAR-3 and A4 cells. Substantial FR-specific binding of FolateSiR-1 was observed by in vitro and in vivo fluorescence imaging. Cell viability imaging assays showed that NIR-PDT induced cell death in KB cells. In vivo longitudinal fluorescence imaging showed rapid peak accumulation of FolateSiR-1 in the KB tumors 2 h after injection. In vivo PDT conducted at this time point caused tumor growth delay. The relative tumor volumes in the PDT group were significantly reduced compared to those in the other groups [5.81 ± 1.74 (NIR-PDT) vs 12.24 ± 2.48 (Folate-SiR-1), vs 11.84 ± 3.67 (IR), vs 12.98 ± 2.78 (Untreated), at Day 16, P < 0.05]. IHC analysis revealed reduced proliferation marker Ki-67-positive cells in the PDT treated tumors, and hematoxylin-eosin staining revealed features of necrotic- and apoptotic cell death. CONCLUSION: FolateSiR-1 has potential for use in PDT, and FR-targeted NIR-PDT may open a new effective strategy for the treatment of FR-overexpressing tumors.

11.
J Am Chem Soc ; 144(43): 19778-19790, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36191139

RESUMO

Fluorogenic probes for bioimaging have become essential tools for life science and medicine, and the key to their development is a precise understanding of the mechanisms available for fluorescence off/on control, such as photoinduced electron transfer (PeT) and Förster resonance energy transfer (FRET). Here we establish a new molecular design strategy to rationally develop activatable fluorescent probes, which exhibit a fluorescence off/on change in response to target biomolecules, by controlling the twisted intramolecular charge transfer (TICT) process. This approach was developed on the basis of a thorough investigation of the fluorescence quenching mechanism of N-phenyl rhodamine dyes (commercially available as the QSY series) by means of time-dependent density functional theory (TD-DFT) calculations and photophysical evaluation of their derivatives. To illustrate and validate this TICT-based design strategy, we employed it to develop practical fluorogenic probes for HaloTag and SNAP-tag. We further show that the TICT-controlled fluorescence off/on mechanism is generalizable by synthesizing a Si-rhodamine-based fluorogenic probe for HaloTag, thus providing a palette of chemical dyes that spans the visible and near-infrared range.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas , Ionóforos
12.
RSC Chem Biol ; 3(7): 859-867, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35866167

RESUMO

Monitoring the activities of proteases in vivo is an important requirement in biological and medical research. Near-infrared (NIR) fluorescent probes are particularly useful for in vivo fluorescence imaging, due to the high penetration of NIR and the low autofluorescence in tissue for this wavelength region, but most current NIR fluorescent probes for proteases are targeted to endopeptidase. Here, we describe a new molecular design for NIR fluorescent probes that target exopeptidase by utilizing the >110 nm blueshift of unsymmetrical Si-rhodamines upon amidation of the N atom of their xanthene moiety. Based on this molecular design, we developed Leu-SiR640 as a probe for leucine amino peptidase (LAP). Leu-SiR640 shows a one order of magnitude larger fluorescence increment (669-fold) upon reaction with LAP than existing NIR fluorescent probes. We similarly designed and synthesized EP-SiR640, a NIR fluorescent probe that targets dipeptidyl peptidase 4 (DPP-4). We show that this probe can monitor DPP-4 activity not only in living cells but also in mouse organs and tumors. This probe could also detect esophageal cancer in human clinical specimens, based on the overexpression of DPP-4 activity.

13.
Chem Sci ; 13(16): 4474-4481, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656140

RESUMO

Fluorescent probes that can selectively detect tumour lesions have great potential for fluorescence imaging-guided surgery. Here, we established a library-based approach for efficient screening of probes for tumour-selective imaging based on discovery of biomarker enzymes. We constructed a combinatorial fluorescent probe library for aminopeptidases and proteases, which is composed of 380 probes with various substrate moieties. Using this probe library, we performed lysate-based in vitro screening and/or direct imaging-based ex vivo screening of freshly resected clinical specimens from lung or gastric cancer patients, and found promising probes for tumour-selective visualization. Further, we identified two target enzymes as novel biomarker enzymes for discriminating between tumour and non-tumour tissues. This library-based approach is expected to be an efficient tool to develop tumour-imaging probes and to discover new biomarker enzyme activities for various tumours and other diseases.

14.
Bioconjug Chem ; 33(3): 523-529, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35166539

RESUMO

We previously showed that spraying the fluorescent probe gGlu-HMRG (γ-glutamyl hydroxymethyl rhodamine green) can visualize even tiny tumors on the mesentery and peritoneal wall of tumor-bearing mice. However, during surgery, repeated spraying is necessary to detect tumors located deep within organs. Here, we examine whether deeply located tumors can be stained by intravenous administration of this probe. In mice bearing subcutaneous tumors, intravenous administration of gGlu-HMRG resulted in a rapid and specific increase of fluorescence in the tumor, which was visible to the naked eye within 5 min, and the maximum fluorescence intensity ratio of tumor to normal tissue (T/N = 4.3) was reached at 30 min. In mice bearing lung tumors, the T/N ratio reached approximately 20 at 30 min after administration, and deeply located tumors were clearly visualized. These results suggest that intravenous administration of gGlu-HMRG may be a useful technique in fluorescence-guided surgery of tumors.


Assuntos
Corantes Fluorescentes , Neoplasias , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Camundongos , Neoplasias/patologia , Rodaminas , gama-Glutamiltransferase
15.
Sci Adv ; 7(47): eabg8585, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797716

RESUMO

Actin is a ubiquitous cytoskeletal protein, forming a dynamic network that generates mechanical forces in the cell. There is a growing demand for practical and accessible tools for dissecting the role of the actin cytoskeleton in cellular function, and the discovery of a new actin-binding small molecule is an important advance in the field, offering the opportunity to design and synthesize of new class of functional molecules. Here, we found an F-actin­binding small molecule and introduced two powerful tools based on a new class of actin-binding small molecule: One enables visualization of the actin cytoskeleton, including super-resolution imaging, and the other enables highly specific green light­controlled fragmentation of actin filaments, affording unprecedented control of the actin cytoskeleton and its force network in living cells.

16.
Biomolecules ; 11(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34827552

RESUMO

Hydrogen sulfide and its oxidation products are involved in many biological processes, and sulfane sulfur compounds, which contain sulfur atoms bonded to other sulfur atom(s), as found in hydropersulfides (R-S-SH), polysulfides (R-S-Sn-S-R), hydrogen polysulfides (H2Sn), etc., have attracted increasing interest. To characterize their physiological and pathophysiological roles, selective detection techniques are required. Classically, sulfane sulfur compounds can be detected by cyanolysis, involving nucleophilic attack by cyanide ion to cleave the sulfur-sulfur bonds. The generated thiocyanate reacts with ferric ion, and the resulting ferric thiocyanate complex can be easily detected by absorption spectroscopy. Recent exploration of the properties of sulfane sulfur compounds as both nucleophiles and electrophiles has led to the development of various chemical techniques for detection, isolation, and bioimaging of sulfane sulfur compounds in biological samples. These include tag-switch techniques, LC-MS/MS, Raman spectroscopy, and fluorescent probes. Herein, we present an overview of the techniques available for specific detection of sulfane sulfur species in biological contexts.


Assuntos
Enxofre , Sulfetos
17.
Methods Enzymol ; 657: 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34353483

RESUMO

Photoacoustic (PA) imaging is an emerging imaging modality that combines the advantages of optical imaging and ultrasound imaging. In particular, activatable PA probes, which visualize the presence or the activity of target molecules in terms of a change of the PA signal, are useful tools for functional imaging. In this chapter, we describe the development of small-molecule-based activatable PA probes, focusing on the design and synthesis of PA-MMSiNQ, our recently developed activatable PA probe for HOCl. We also describe the protocols used for evaluation of PA-MMSiNQ with a UV-vis spectrometer and a PA imaging microscope.


Assuntos
Técnicas Fotoacústicas , Imagem Molecular , Imagem Óptica , Análise Espectral
18.
Cell Rep ; 36(1): 109311, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233188

RESUMO

In this study, we present a live-cell-based fluorometric coupled assay system to identify the compounds that can regulate the targeted metabolic pathways in live cells. The assay is established through targeting specific metabolic pathways and using "input" and "output" metabolite pairs. The changes in the extracellular output that are generated and released into the extracellular media from the input are assessed as the activity of the pathway. The screening for the glycolytic pathway and amino acid metabolism reveals the activities of the present drugs, 6-BIO and regorafenib, that regulate the metabolic fate of tumor cells.


Assuntos
Bioensaio/métodos , Células/metabolismo , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Metaboloma/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Sorafenibe/farmacologia
19.
Photodiagnosis Photodyn Ther ; 35: 102420, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34242818

RESUMO

BACKGROUND: Accurate diagnosis of peritoneal metastasis in gastric cancer (GC) is important to determine the appropriate treatment. This study aimed to examine whether matrix metalloprotease-14 (MMP-14) was a candidate enzyme in fluorescence imaging for the diagnosis of peritoneal metastasis in GC. METHODS: GC and normal peritoneal (NP) tissues from 96 and 20 patients, respectively were evaluated for MMP-14 expression. Live cell imaging of GC cell lines (NUGC4, MKN45, MKN74, HGC-27, and Kato-III) was performed using the MMP-14-activatable fluorescence probe; BODIPY-MMP. Furthermore, the overall survival (OS) was calculated in all patients (n = 96). RESULTS: MMP-14 expression was significantly higher in GC tissues (median: 3.57 ng/mg protein; range:0.64-24.4 ng/mg protein) than in NP tissues (median: 1.34 ng/mg protein; median: 0.53-3.09 ng/mg protein) (P < 0.01). Receiver operating characteristic curves showed that the area under the curve, sensitivity, and specificity were 0.907, 84.4%, and 90.0%, respectively. In live cell imaging using the BODIPY-MMP, fluorescence was observed in five GC cell lines. In the analysis of OS, the high expression of the MMP-14 group had a significantly poorer OS rate than the low expression of the MMP-14 group (P = 0.02). In the multivariate analyses, MMP-14 expression was an independent risk factor for OS (hazard ratio: 2.33; 95 % confidence interval: 1.05-5.45; P = 0.04). CONCLUSION: MMP-14 is a promising enzyme in intraoperative fluorescence imaging for peritoneal metastasis in GC, especially in patients with poor prognosis.


Assuntos
Neoplasias Peritoneais , Fotoquimioterapia , Neoplasias Gástricas , Biomarcadores Tumorais , Humanos , Metaloproteinase 14 da Matriz , Neoplasias Peritoneais/diagnóstico por imagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Prognóstico , Neoplasias Gástricas/diagnóstico por imagem
20.
Toxicol Sci ; 183(2): 393-403, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270781

RESUMO

Exposure to hydrogen sulfide (H2S) can cause neurotoxicity and cardiopulmonary arrest. Resuscitating victims of sulfide intoxication is extremely difficult, and survivors often exhibit persistent neurological deficits. However, no specific antidote is available for sulfide intoxication. The objective of this study was to examine whether administration of a sulfonyl azide-based sulfide-specific scavenger, SS20, would rescue mice in models of H2S intoxication: ongoing exposure and post-cardiopulmonary arrest. In the ongoing exposure model, SS20 (1250 µmol/kg) or vehicle was administered to awake CD-1 mice intraperitoneally at 10 min after breathing 790 ppm of H2S followed by another 30 min of H2S inhalation. Effects of SS20 on survival were assessed. In the post-cardiopulmonary arrest model, cardiopulmonary arrest was induced by an intraperitoneal administration of sodium sulfide nonahydrate (125 mg/kg) in anesthetized mice. After 1 min of cardiopulmonary arrest, mice were resuscitated with intravenous administration of SS20 (250 µmol/kg) or vehicle. Effects of SS20 on survival, neurological outcomes, and plasma H2S levels were evaluated. Administration of SS20 during ongoing H2S inhalation improved 24-h survival (6/6 [100%] in SS20 vs 1/6 [17%] in vehicle; p = .0043). Post-arrest administration of SS20 improved 7-day survival (4/10 [40%] in SS20 vs 0/10 [0%] in vehicle; p = .0038) and neurological outcomes after resuscitation. SS20 decreased plasma H2S levels to pre-arrest baseline immediately after reperfusion and shortened the time to return of spontaneous circulation and respiration. These results suggest that SS20 is an effective antidote against lethal H2S intoxication, even when administered after cardiopulmonary arrest.


Assuntos
Parada Cardíaca , Sulfeto de Hidrogênio , Animais , Antídotos/farmacologia , Azidas , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/tratamento farmacológico , Camundongos , Sulfetos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...